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Dynamic scaling form in wavelet-discriminated Edwards-Wilkinson growth equation

Z. Moktadir™
School of Electronics and Computer Science, Southampton University, United Kingdom
(Received 16 March 2005; published 28 July 2005)

We present an analysis of dynamic scaling of the Edwards-Wilkinson growth model from wavelets’ perspec-
tive. Scaling function for the surface width is determined using wavelets’ formalism, by computing the surface
width for each wavelet scale, we show that an exact and simple form of the scaling function is obtained. These
predictions are confirmed by computer simulation of a growth model described by the EW equation, and by

numerical calculations.
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I. INTRODUCTION

Growth of smooth thin films has major implications in the
microelectronics industry and nanotechnology. Understand-
ing the mechanisms by which surfaces and interfaces
roughen during growth, was the subject of an enormous
theoretical and experimental effort in recent years [1-4].
Nonequilibrium growth models were developed either as
computer simulations or as continuum stochastic, partial dif-
ferential equations. In continuum models, surface roughen-
ing is caused by fluctuations in the flux of deposited atoms,
and fluctuations of the surface obey dynamic scaling laws. A
quantity which is often investigated, and obeying such laws,
is the surface width w which is expected to be in the form

w(L,t) = Lf(t/L?), (1)

where L is the length over which w is calculated (or mea-
sured), ¢ is the time, « is the roughness exponent, and z
=a/ B is the dynamic exponent. The scaling function f has
the asymptotic form, f~ x? for x<1 and f=const for x> 1.
The simplest equation that describes a variety of surface dy-
namics is the Edwards-Wilkinson equation [5] which is
given by

oh
E =vVh+ 5(x,1), (2)

where v is often called the surface tension and 7(x,7) is the
random component of the incoming flux, which is a function
of the position and time. This function is assumed to be a
Gaussian white noise with zero mean, or a spatially corre-
lated noise (long-ranged correlation), i.e.,

(n(x,0)n(x",1")) =2F8(x = x") &t - 1'), 3)

(n(x,0)p(x",1')y = 2F|x —x'[*~48(1 - 1), 4)

where F is a constant and 0<p<{1/2 is an exponent char-
acterizing the decay of spatial correlations. The respective
Fourier transforms are given by

(n(q.0n(q",1')) =2Fsq+q")dt-1"), &)

*Electronic address: zm@ecs.soton.ac.uk

1539-3755/2005/72(1)/011608(5)/$23.00

011608-1

PACS number(s): 81.15.Aa, 05.40.—a, 68.35.Ct, 68.55.Jk

(n(q.0m(q',1"))=2D, g *Sq+q")8t—1").  (6)
At d=1, the prefactor D, is given by

F(* F22\\ar
D,= —f w7 cos(u)du = P27 Nl (p)

7Jo r(2-p) ° M

where I' is the gamma function. Equation (2) is soluble and
the corresponding dynamic and roughness exponent in one-
dimensional space for uncorrelated noise are z=2 and «
=1/2, respectively. For a spatially correlated noise, the ex-
ponents are a=p+1/2 and z=2 in one-dimensional space.
These exponents are obtained either by using scaling argu-
ments or solving the growth equation exactly. Usually this is
achieved using Fourier methods [6-10], leading to compli-
cated scaling functions for which asymptotic form is given.
We propose in this paper to investigate the EW equation
using wavelets formalism. We will show that simple form of
the scaling function is obtained in two cases, growth with
noncorrelated noise; and growth with spatially correlated
noise.

Wavelets can decompose a surface profile concisely given
information on both, the scale and the location simulta-
neously. We will investigate the scaling of the surface width
at each scale instead of investigating it as a function of the
system size, as it is usually performed. Finally, we will com-
pare our analytical results to a computer model described by
the EW equation and to numerical calculations.

II. WAVELET DECOMPOSITION OF EW EQUATION

Wavelet analysis is the breaking up of a signal into shifted
and scaled versions of the original (or mother) wavelet. That
is,

I (x-b
la,b) = ?lﬁ(—) (8)
Va \ a
where a (a>0) and b are, respectively, the scale parameter
and the dilatation parameter, x is the space variable, and ¢ is
the mother wavelet. These basis functions vary in scale by
slicing the data space using different scale sizes. The con-
tinuous wavelet transform (CWT) is defined as the sum over

all of the surface profile multiplied by the shifted and scaled
mother wavelet,
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FIG. 1. Wavelet transform of the surface profile obtained by
numerically solving the EW equation. The top graphic shows two-
dimensional gray scale representation of Wy(a,x). The bottom
graphs show slices of Wy(a,x) for two different scales a=1, and
a=4.

Wﬂa,b):fh(x)zﬂ(a,b)dx, 9)

W(a,b) are the wavelet coefficients which are a function of
the scale and the position. Then, CWT describes the surface
profile in a given position b and a given scale a.

Since the height h(x) is assumed to be a single valued
function of x, it is possible to perform its wavelet transform,
ie.,

1 -
Wila)= = | h(y)w(¥)dy. (10)

Thus, wavelets have the ability to split a surface profile up
into components that are not pure sine waves, as opposed to
Fourier transform. When summing all those components, one
retrieves the exact profile. In Fig. 1 we show two-
dimensional grey scale representation of the wavelet trans-
form of the surface profile generated by Eq. (2) and the de-
composition of the surface profile at the scales a=1 and a
=4. These profiles are obtained by applying Eq. (10) to Eq.
(2). Notice that small scales correspond to the details (high
frequencies) of the surface profile and large scales corre-
spond to the large features (low frequencies) of the surface
profile. It should also be noted that the decomposition does
not result in sine waves like in Fourier expansion. In this
calculation we used the well-known Mexican hat wavelet
which is given by (x)=(1-x?)exp(—x>/2). The wavelet
#(x) and its Fourier transform are displayed in Fig. 2.

III. DYNAMIC SCALING

In this section the lateral system size L is taken to be
infinite and therefore the dependence on L is suppressed. We
also restrict ourselves to one-dimensional space. Since each
decomposition does not result in a sine wave, it is possible to
calculate its power spectrum. By setting £é=(y—x)/a in Eq.
(10), we compute the Fourier transform of each decomposi-
tion,
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FIG. 2. Top graphic, Gaussian wavelet of order 2 and its Fourier
transform, bottom graphic.

W(a.q.0) == ah(q.1) f W& e'dé = - \ah(q.0) (- ag).
(11)

where / and 12 are the Fourier transforms of the height # and
the mother wavelet ¢, respectively. The power spectrum of
each decomposition is then

T(a,q,1) = (W(a,q,0) W(a,— g,0)) = aP(q,1)| A~ aq)|*.
(12)

The function l,?/(q) is the Fourier transform of the mother
wavelet. For the “Mexican hat” wavelet ¢{(x), the function
(q) is given by (q)=\2mg* exp(—q*/2) which is displayed
in Fig. 2. The quantity P(g) is the power spectrum of the
surface height. By applying Fourier-transforming equation
(2), we obtain

oh . i
@0 =- vg*h(q,1) + 7(q,1), (13)

where fz(q,t) and 7(q,t) are the Fourier transforms of the
height h, and the noise 7, respectively. Equation (13) is
trivial and its solution is given by

t
h(g.t) = J "D (g DY d . (14)
0

The power spectrum is then <ﬁ(q,t)fz(—q,t)>, ie.,

2
Pg) = 2F[l - exp(—22vq N]

vq
for noncorrelated noise, and
[1 - exp(-2vg*1)]

Vq2 ’

P(q)=2D,q**

for correlated noise. Using the expression of the power spec-
trum given by (12), We can calculate the surface width at
each scale. We obtain for noncorrelated noise,
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FIG. 3. The surface width as a function of time (dotted lines) for
a=2, 3, 4, 5, and 6. The parameters used in this derivation are v
=0.1 and F=0.01. Also shown, the fit to numerical data (continuous
lines) using Eq. (17). The inset shows the linear dependence of the
saturated width as a function of the scale as predicted by Eq. (17).

qmax
wola,)?= f I'(a,q,t)dq
0

5 q

a F'7T max

= J 1- e‘z”"z’)qze_”z"2dq (15)
0

and for correlated noise
2a°D ar [(Imax 2 22
wplan)?= =% f g1 = e g
0

(16)

The upper cutoff g,,., is of the order of the inverse lattice
constant; we assume that the correlation length is larger than
1/qmax and we set g.« to infinity in (15) and (16), i.e.,

2_Fﬂs/zaz 2 -3 L (v 2
wola,t)™ = I-{1+— xa“fo|l —
v a a

(17)
and
D WF(% - p)az”+2 2pt\P32
wy(a,1)?=—" 1-{1+—
v a
2
t

OCa2[J+2 p(%) , (18)

PR e VAR .
where f,(x)=[1-(1+2x)” ¥2]. Thus, the dynamic exponent

z=2 is independent of the nature of noise. On the other hand,
the saturation value of the width depends on the nature of the
noise and it scales as w>xa® with a=1 for noncorrelated
noise and w*a® with a=p+1 for spatially correlated noise.
The result for white noise is obtained by setting p=0. The
scaling function f, has the asymptotic form f,(x)<x'* for
x<1 and f,(x)—1 for x>1.

IV. COMPARISON WITH NUMERICAL SIMULATION
A. Uncorrelated noise

We now consider the growth Eq. (2) with white noise
source and solve it numerically. We compute the continuous
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FIG. 4. Data collapse after rescaling, using z=2 and a=1. Each
symbol corresponds to a different scale, a=2 (@), a=3 (W), a=4
(A), and a=5 ().

wavelet transform of the obtained height profile using Eq.
(10). The mother wavelet used is the Mexican hat wavelet
(x). Then we compute the surface width of each decompo-
sition directly using the formula

L
w(a )= %E (W@ = W@,  (19)

i=1

where WT(a,1) is the average value at a given scale a. The
index i refers to the position and L is the system size. We
choose L=10°. Figure 3 displays the evolution of the surface
width for few decompositions, a=2, 3, 4, 5, and 6. The pa-
rameters used in this derivation are »=0.1 and F=0.01. The
inset shows the linear dependence of the saturated width
(t— ), in agreement with Eq. (17). Note that in the early
stages of growth, the surface width is independent of scale.
To check the validity of the calculations derived in Sec. III,
we fit the numerically determined surface width at a scale a
with Eq. (17) for few different values of the scale a. The
result is shown in Fig. 3. Clearly, the agreement between Eq.
(17) and the numerical values of the surface width is very
good. In Fig. 4 we plot w(a,?)/a vs t/a* showing the data
collapse, confirming the scaling relation (17).
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FIG. 5. The surface width as a function of time (dotted lines) for
a=2, 3, 4, and 5. The parameters used in this derivation are v=1
and F=0.01. Also shown, the fit to numerical data (continuous
lines) using Eq. (18). The inset shows the saturated width as a
function of the scale as predicted by Eq. (18) for different values of
p=0.1 (@), 0.2(A), 0.3(H), 0.4(), and 0.48(#).
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FIG. 6. Data collapse after rescaling data, in numerically solved
EW equation with correlated noise using z=2 and p=0.1. Each
symbol corresponds to a different scale: a=2 (0), a=3 (A), a=4
(<€), and a=5 (O).

B. Correlated noise

We now numerically solve the EW equation but with cor-
related noise satisfying (4). To generate a correlated noise
sequence, we use the same method used in Refs. [11,12]
(note that other algorithms exist, see, for example, Ref. [13]),
which is described as follows: we first generate an uncorre-
lated Gaussian noise 7(x,f), then we compute its Fourier
transform 7)(q,t) and define

7' (q.t) =q"7(q.1). (20)

Then we perform the inverse Fourier transform of %’ (g,?) to
obtain the correlated noise sequence 7’ (x,). Equation (2) is
discretized using the standard backward forward difference
numerical scheme. We choose the time step small enough to
ensure convergence. The obtained surface profile is then
wavelet transformed using (x) and the surface width is cal-
culated for each scale using Eq. (19). Figure 5 displays the
evolution of the surface width w,(a,?) for p=0.1. Also
shown is the fit to Eq. (18) in which we set p=0.1. In the fit
procedure, the parameters used in the numerical simulation
(F and v) are retrieved with an accuracy of about 10%. This
discrepancy between the input values and the output ones is
due to the discrete nature of the numerical procedure. The

w(a,time)
N

—

0 5 10
time X 105

FIG. 7. Time evolution of the surface width (dotted lines) for
three scales a=10, 20, and 30, for random deposition with relax-
ation. Also shown is the fit to Eq. (18) (continuous lines).
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FIG. 8. Data collapse after rescaling in random deposition with
relaxation, using z=2 and a=1. Each symbol corresponds to a dif-
ferent scale, a=10 (), a=20 (A), and a=30 ().

inset of Fig. 5 shows the saturation value at each scale for
different values of p=0.2, 0.3, 0.4, and 0.48. For small val-
ues of p, the distinction between different curves is hardly
noticed since the exponents a=p+1 are very close to each
other. For p=0.48 the nonlinear relation (a power law rela-
tion) between wg, and the scale a becomes significant. Fig-
ure 6 shows the data collapse after plotting
w,(a,t)/a’*! vs t/a*, confirming the scaling relation [Eq.

(18)].

V. COMPARISON WITH A COMPUTER MODEL

In this section, we apply the results derived in Sec. III to
a computer model which is believed to be described by the
EW equation. This computer model was developed by Fam-
ily and Viteck [14], to simulate random deposition, incorpo-
rating a surface relaxation mechanism. This model is de-
scribed as follows: atoms are randomly falling on the surface
where they are allowed to move (or diffuse) within a fixed
length to positions where their height is at a minimum. Note
that in our simulation, the computer-generated noise is un-
correlated, since each event is independent of the previous
one. This is achieved by using a computer random numbers
generator with uncorrelated sequence. Periodic boundary
conditions are used in the present simulation. We set the
system size to L=10% and the “diffusion length” to 5. The
deposition is then carried out up to a time 7. The wavelet
transform of the height profile is then performed at different
scales using the wavelet (x). Figure 7 shows the evolution
of the surface width w(a,t) for a=10, 20, and 30. Also
shown, is the fit to Eq. (18). In this case, the agreement
between analytical results and computer simulation is also
very good. The scaling relation (18) is confirmed by the data
collapsing procedure in which we plot w(a,t)/a”*' vs t/a?.
The result is shown in Fig. 8.

VI. CONCLUSION

In conclusion, we analyzed the dynamic scaling of EW
growth model from the wavelets’ perspective. EW equation
is decomposed by applying a wavelet filter, discriminating
the dynamics occurring at each scale. We investigated dy-
namic scaling in terms of scale but not the system size and
derived the exact and simple expression for the scaling func-
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tion. Two cases were considered, growth with correlated
noise and growth with noncorrelated noise. We compared
analytical solution for the surface width at each scale with
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numerical results and with computer simulation of deposition
with relaxation. In both cases, there is a good agreement
between theory, numerical, and computer simulations.

[1] Dynamics of Fractal Surfaces, edited by F. Family and T. Vic-
sek (World Scientific, Singapore, 1991).

[2] P. Meakin, Fractals, Scaling and Growth far from Equilibrium
(Cambridge University Press, Cambridge, U.K., 1998).

[3] A. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, U.K.,
1995).

[4]J. Krug and H. Spohn, Solids far from Equilibrium: Growth
Morphology and Defects (Catena Verlag, Cremlingen-Destedt,
1987).

[5] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.
A 381, 17 (1982).

[6] T. Nattermann and L. H. Tang, Phys. Rev. A 45, 7156 (1992).

[7] Y. K. Yu, N. N. Pang, and T. Halpin-Healy, Phys. Rev. E 50,
5111 (1994).
[8] S. Majaniemi, T. Ala-Nissila, and J. Krug, Phys. Rev. B 53,
8071 (1996).
[9] N. N. Pang, Phys. Rev. E 56, 6676 (1997).
[10] T. Antal and Z. Racz, Phys. Rev. E 54, 2256 (1996).
[11] C. K. Peng, S. Havlin, M. Schwartz, and H. E. Stanley, Phys.
Rev. A 44, R2239 (1991).
[12] M. S. Li, Phys. Rev. E 55, 1178 (1997).
[13] N. N. Pang, Y. K. Yu, and T. Halpin-Healy, Phys. Rev. E 52,
3224 (1995).
[14] F. Family and L. T. Vicsek, J. Phys. A 18, L75 (1985).

011608-5



